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1. INTRODUCTION

This is Part II in a sequence of papers , the first one being [11. We

have tried to make the presentation essentially self-contained by restating

certain results without proofs , but we shall frequently refer the reader to

Part I for details. Part I also contains a more detailed introduct ion to the

prob lem under study and an historical account of it , as well as a relevant list

of references.

Given an rn-dimensional stationary stochastic process ~y(t); t € R}, which

is real , Gaussian , purely nondeterministic , mean square continuous and centered ,

the basic problem is to find representat ions of the type

y( t) = Cx( t) (1 . 1)

where C is a linear time-invariant operator and {x(t); t ~ R} is a (generally

inf inite dimensional) vec tor Markov proc ess , for which we can obtain a differ-

ential equation representation .

This problem can be given a mathematically more precise formulation in

a Hu bert space setting . To this end , define H to be the Gaussian space

generated by y, i.e., the linear hull of the random variables {yk(t): t € R ,

k = 1,2 ..., m} closed in L2 norm. The space H is a Hu bert space with inner

• product <~~,r1 > =  E{~~}, where E{.} denotes mathematical expectation . To de-

scribe the dynamical aspects of the problem we need to define the past and

the future of H and to introduce a shift operator on H: Let the past space H

and the future space H~ be the closed linear hulls in H of Cyk(t) ; t � 0,

k = 1 ,2, . . . ,  m} and (y
k(t); t � 0, k = 1,2 - m} respectively. Moreover ,

since y is stationary , there is a strongly continuous group {Ut; t € R} of

unitary operators H -
~ H such that y

k (t) Ut_sY
k
(s) for all t ,s and k [21.

Given three arbitrary subspaces A ,B and X of H, we shall write A i. B when

A and B are orthogonal and A i. B IX when they are conditionally orthogonal

~~~~~~~~~~ -j - , — -~~~~~~~~~~~~~~~~ - _ —- 1
~~~~~~

.- —
~~
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• • • X .X Xgiven X , i.e., ~L ~~~, 1 S> = sa ,~~~
’
~ for a l l  a ~ A and ~ B , w here 1

denotes orthogonal projection onto X. Finall y we shall write A v B to de-

note the closed linear hull of A and B.

The problem at hand can now be formulated as a geometric prob l em in the

Hu bert space H: Find all subspaces X such that

( i)  X is Mar kovian , i . e .

X i X I X  (1.2)

whe re X~ :=V ~ ~ 0 
(U
~

X) and X 4 :=  
~ o (lt t X’L

( i i)  X for k = 1 , 2 , . . . , m

( i i i )  X is rl Tinina Z , i.e.. there is no proper suhspace of X satisfying

- (i) and ( i i ) .

- 
Each solution X of this problem gives rise to a representation of

type (1.1) . In fact , a vector process {x(t); t e. RT taking values in some

suitable function space can be constructed by appropriately choosing a basis

in X and applying the shift U~ to its components. (Note that , sinc e “ i s

mean-square continuous , H is separable.) In v iew of (i), this process must

be Markov . Condition (ii) then yields a representation (1.11. Finall y ,

(iii) insures that the state space X is as small as possible. In Section

we shal l describe how this choice of basis is made in the finite dimensiona l

case (dim X < 
~~~

) ,  postponing the infinite dimensional case to a subsequent

paper , Part III. (The geometric theory of Sections 2-6 does not , howev er ,

require any restriction of the dimension of X.)

This paper const itutes not merely a sequel of Par t I: it  con tai ns many

ex tens ions , generalizations and other improvements of the results presented

in Part I. We have found that the geometric theory is most easily understood

and ex plained in term s of perpendicularl~i int~ r~st~~~f, 
~~~~~~~~~~~~~~~~ and we de-

vote Sections 2 and 3 to this reformulation . In Section 4, we show how the

~~~~o ~~~~~ - ,  
A.



conce 1n s of det erri In ist Ic real i :at ion t ht.orv I ~ ,4 can he u~e~1 to r ro~ t do fur-

ther insight into the stoc hast  ic theory , and Sect ion S :ind ci contain e~. t ens ion’~

of the spect ral domain theory presented in [ ii  • Sect ion , fina l iv  , s dovot ~~

to dynamical representations ot f i n ite  dimension al s t a t e  spaces .

2. PERPENDICULARLY INTERSECTING SU BSPAC ES

Let A and B he two (c losed ) suhspaces of the Hi Ihert space H. We

shal l sa that the suhspace X H j s  an ~.4 , ~~~~~~~~~~~~~ i~ I’:.; ~~~~~~~~~~~ if

A i  BI X .  (:.fl

If there is no ~‘ .‘re~’ subspact’ of \ which also sa t i’,fu’c ~.$ .  1) , \ j c  c~~~J

to be —i ’:i”~z . The purpose of t h is  sect ion i s to Jet erm tnt’ under what cond

t ions on A and B there is only .“: .‘ minimal (A , B) - spl i t t  i n~ ~tib~ p.i~ t’

LEMMA 2. 1 Th.~r, ’ I ~~~~ .~ 
•
~~ : ~. .‘u.~ ‘: : I , :‘‘ ‘;~: •:. ‘.• . ~ .

~~~~~ I’: A (I’: B) , ‘:.~~‘?.‘ : .  \ ~
‘
~B (X — ~

R
A~ . (h it’ bar over the’ 1’ den~ t es c los ure .

Proof. The usefu l decom pos it ion fornuila

-AA = E B ~ (A ~ B ) -

implies that A o (A ii B’) and that A 0 F ’11 B , the latter of which is

equivalent to ( 2 .  1) with X ~i
A B. On t he other hand , anY (A .Rl .sp l  it t tu~

subspace X containing A sa t is f ies  A o X i B , i.e.. A 0 X A H’, or

equivalently X A (A ii B’), i .e. , X I~~A. ii

LEMMA 2. ~ .4 : ( A , B’
~—~~~~~: ~~~~ ~~~~~~~~~~~~~~~~~~~~~ ‘.‘‘;.~~:I . -‘ o H

Proof. Let r~ ~ A a B. Then ~ I r~IX , i.e .. ~i X. ~1

Consequent lv , if there i s only one’ -‘ . B)—s p l  i tt  in~ siibspace . we’ have
A -B

B = E A • A n B. Conversely , if

= A n B ,

__  
I’

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--
~~~~~~~~~~~:~~ _ _ _ _ _ _



and it must he the onl~’ minima l A .B) — sp i  it t in~ siii’sp,ice , cince a l l such cu~’—

spaces conta in A • B (Lemma 2.2) . We shall say that A and B i’:t.~ ’a. - ’ ~
:‘,‘?‘~‘,‘‘ i.’:. i’ ~~:, if one of the two equivalent conditions (2 . .~~~ or (2 .3) holds.

PROPOSITION 2.1. ‘~~~r, ‘ i a :~~~ i.::,.’ ~i’:i~~:, (A ,H)— .~ ’ I’:: .‘~~~~

z’:, i - ‘
~~~~ :. ~~ A :‘..~ B i’ .’~’a. ’ ’~ :‘ , ‘~‘ , ‘~ : I, ’:. ,

~~zr~ -:‘ I~ :1; ’ ’: :.

‘~.i ( 2. - ; ’ .

The follow ing proposition provides an alternative characteri:ation of

perpendicular intersection of subspaccs in the case that they span the whole

space .

PROPOSITION 2.2. :~~~~t A ‘~ B = II. ‘ :c’: A :‘:~~ B i’:~.~ ’a. ’~ .~~~~‘: :I—

• . . • . . I . . . I IB c A, ~
‘
~~‘ ~‘~~ :4 : : ‘~: . c’: . :. , ~\ B . (Here A denotes

the orthogona l comp lement of A in U, ’

Proof . (if) : Assume that B1 c A holds. Set X = ~
1B. Then (2.2)

y ields A X ~ B~ , from which it follows that X c B and that A a H = X.

(only if) : Set X = ~A8 and assum e that X = A a B. Then it follow s

from (2 . 2 )  that ~A o X) i B. Therefore , sInce A v B = Ii and B

B1 A . ,~~

In the sequel , we shall need the follow i ng simple observation , the proo f

of which is trivial.

LEMMA 2. 3. ~~~~
‘ 
~ A • B , A ’ ~m f B’ 2~’ ~~~~~~~~~ a: ’~~~~ ’ o  s:~~’: t i:.: ~ A c A’

~~~ B c fl ‘ ~~~~~~~~~~~~~~~~~ (A’ ,B’ )— a~’.~ f’:~ d’c:\: 0 ~: 
• c~’ ~‘: (A . ~~~~

—
~~~~

‘

3. THE GEOMETRY OF SPLITTING SUBSPACES REVISITED

Our bas ic prob lem is to determine the set of all minima l (H

spl itting subspaces . where l( and H~ are the past and future spaces of the

* —-• -—~~~ , - .

- - _ J  ~!__ _ ._-_ ~~~~~~ ~~~ 

_____ J — ~~~~~~~~~~~~~~~~ ~ ~~~.
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given stoc hastic process { y ( t ) :  t R } ;  we shall usually drop the p ref ix

(H ,H )  , plain “spl itting subspace ” referring to t he pair (H ,lI~) . If if and

intersec t perpendicularly there is only one minima l splitting suhspace ,

namely the ‘coc~ t ‘~z~,c

11° a H~ (3.1)

(Proposition 2 .1 ) .  When y has a rational spectral density, this corresponds

to the case where v can be realized by a purely autoregressive scheme . How-

ever , in general this is not the case , and there is a whole family of minimal

splitting subspaces , two of which are the forward and backward predictor

spaces X :=  E~~H~ and : ~
H
H respectively (Lemma 2.1). Defining

H e X and N’ := 1I~ 9 we obtain the orthogonal decomposition

H = N ~ H0 e N~ , (3.2 )

where H is the Gaussian space of the process y and HD is the :‘~~:?~~ 
sr~ z.’c

Ha X v X .  In Part I, we showed that all minima l splitting subspaces X

sat isfy

H° c x c H0, (3.3 )

i.e., the frame space is the closed linear hull of all minimal splitting sub-

spaces , hence conta ining all pertinent information about y. We shall call

N and N~ the junk spacc~ s ince all information in them may be discarded .

By applying (2 .2 ) , it is immediately seen that N = H a (H+
Y

L and =

a ( H) ’. In the special case that H and H~ intersect perpendicular ly

II~ and H° co incide .

The following theorem expresses the fact that any (minimal or noriminimal)

splitting subspace can be regarded as a ~~ir~~Z splitting subspace if the past

and futur e spaces are extended so that they intersect peri~endicular1v .

_____________



- ~~~~~~~~~~~~~~~~~ 
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THEOREM 3.1. :~ ~~~~~~~ X ii -:  I’~~: ~~~~ ~~~~
‘..• ‘ ‘~~

‘ :
‘ 

~~~~~~ ~~~~~~~ 
1’

~ ~ i:u: ~~~ ~I’: f ! ~:.
’ (S , S) — o: ~ .

‘ I r ~‘ :.: a:~:’ z\ :~~

= S a 5 (3.4)

~~~~~~~ ~~~~~~~~~~~~~~~~~~ I,:~ ,’~’o, ’~ I’: : ~~~~~ z . ’ca S :‘:J S ~~~~ ~~ : .  5 -
~

~~:.i S ~ H
4
. ~ :~‘ ‘~‘ o ’ ~:. ’~~ X ~ (S , i~~ .“:c— “:c , ~~~~‘ :‘~: S , ~~) ~~,‘I

• - . i.:~‘:: ‘:~~~‘ . :~ ~,‘ •‘“r: ~~~~~ ~~~~ ~‘:c ~‘c - : .~ ‘::~ ~ = ii v \ ~:‘-.: S El ~ X.

COROLLARY 3.1. •~~, ‘,‘~~~~~~~~~~ .~~~
- : ,“: (.~.4 ~~~~~~ ~~~~ ~~~ :~~*: ~~~~~~ :‘: :‘:~ .

•‘: ‘~~: ‘:,1’ ::‘~: , ‘: ‘.k : .O

x ~ (3.~~)

I = 0 S~ (3.h)

I = (3 . )

I ~~S. ( 3 . 8)

Proof . Theorem 5.1 In Part I states that I is a splitting subspace if

and only if (3.5) or . 5.t) holds for some S if and ~ ll~ , and that I

and (S ,~) -are related as in the last sentence of the present theorem . But

then S1 S . and therefore S and ~ intersect perpend icularly (Proposition 2.2)

and I is given by (3.4) (Proposition 2.1). Relations (3.’) and (3.8) follow

by comparing (3.5) and (3.t i ) to (2.2).

A subspace containing the past spac e if will be called an

:~:o~ o:- :~’c and one conta ining the fu ture  H
4 

an x~~~:~fc.I ~~~~~~~~~~~~~~ 
~~~~~~~~~~ We

shall say that an extended past space S (extended future space 5) is ‘~f ’ :f ” ,:.’

if there is a minima l splitt ing suhspace I such that S = if ‘~ I (S = \ I).

This definition coincides with that in [S~ for regular Markovian splitting sub -

spaces (to he defined shortly) .

T ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ . L u m ~~~*-’~~~ . -- -- ‘  -~



pqOP0SITION 3.1. 4’~ c.: :-~ ‘ -  :- .~ ::‘~ 5 ~:‘~~~~“::.
‘ 

~~~~ :‘:! -~~~~ :~

4 1
S c (N ) (5.9)

~ .r~ , •~~~~~ - , ~~~~ :. S f . : ‘ :~:, - ‘:

S c ~~~~~ ( 3 . 1 0 )

Proof . (if~ : In the f i rs t  case , choose S = S1 ~ II~ and in the second

case , S ‘ if. Then it follows from Theorem 3.1  in Part I that I :=

S a S is the required I.

~on [v if~ : Since a min imal split t ing subspace I is contained in 11~ .

w e have S = H v \ ~ (\
+

) i and S = II~ ‘
~ I C (N ) 1

.

The reason for this def ini t ion of mininal itv w i l l  become clear in Sec-

tion S. Note that an arbitrar” pair (5 ,5) of perpendicularly intersecting

minimal extended p~tst and future sp.ices wi l l  not necessarily define a

spl i t t ing suhspace I, al t hough any such I w i l l  be contained in the frame

space FI G. For I to be minim al , the pairing of S and S must he done in

a more precise :nanner. This l ead s to the concepts of observabilit and con-

strtic t ih ilit v as defined by Ruckehusch.

.A splitting suhspace is said to he ~‘ c ~’:’.~ ’~~ if ~
1H~ = I and ~~~ ‘:-

.~~‘:~‘~ f~’c if ~~I1 = I. In Part I , we showed that I = S a S is obse~~ablo

if and only if

= S1 
‘ H~ (3.11)

and constructible if and only if

S = S~ V iI~ . (3 .12)

PROPOSITION 3.2. :~~ X~~~~~ :.~~~f~~ I’ o:~ ’o:’.~ ’~’, ~rn~i ?~~ S ~~i S

t :, ‘ ‘ r ’ ~’~’o:’ ”:.f:’ n~: ~‘.r ’’:Jc.i ~ :‘:. ~ :ii’~’ or :~’1’c . ‘
~:~~ : ~~~ 

‘
‘ :~~i

:~‘c ~~~ I ~~ ~ ~ :



-w- .~~~’-
__ 

~~~~ 4

t i) I

(ii) I :~ ~ oc’~’ .i~Zc ~z”i.~
’ 

~~~~~~~~~~~~~~~~~~~~ ~~~

( i i i )  N fo ~~~~~~~~~~~~~~ z~:J S Ic

( iv )  ~. ~3 ‘:~~‘~~:~ ~ ~~ 5

For a proof of the equivalence of (i) and (ii) , see [6] or Proposition 4.2

below . Keeping Proposition 3.1 in mind , th e rest follows from Theorem 3.1 of

Part I. Note that minimali tv of I imposes a definite pairing of S and S.

- - I
For example , I corresponds to S .=  H and S := (N ) and to S4

~~1 - +
(N ) and S4 : H

Among all minima l splitting subspaces N we shall eventually only be able

to use those which are .c~r k ’~~zv , i.e ., those which satisfy condition (1.2).

As pointed out in P-art I (the original reference is [61), 1 is Markoviaii if

and only if the corresponding extended spaces S and ~ satisfy the follow-

ing two cond itions:

IJ~S c S for a l l  t s 0 (3.13)

U~S C ~ for all t � 0. (3.14)

i.e. , S must be left invariant and ~ right invariant (under the shift Ut
) .

Note that , if N is observable , we need only impose condition (3.13) : then ,

in view of (3.11), (3.14) will follow automatically. In the same way , only

(3.14) is needed when X is constructible. It is easy to see that for a

Markovian spl itting subspace S = X and ~ = X ” , i .e., X~ and N’ inter-

sect perpendicularly. In general , S and ~ are given by S = S1 ® S, and

= ~ S2 where S., and S., are ~O~~b~~~I I~:t’~~~ :’z~ , i.e., they satisfy both

(3,13) and (3.14), whereas S
1 

and are only simply invariant . Then

E R ~~ = S, and 
€ R u~~ = 5,, i.e., S., and 

~~ 
are the purely deter~

ministic parts of S and ~ respectively. If S, = 0 (52=0), we shall say

— ~~~~~~~~~~~~~~~~~~ —— u,1_-~j  ~~~~~~~~~~~~~~~ ~~~ - --~~ - -•L -- - 
-
~~~~ 

- .
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that S (5 ) is :‘: ~~~~~~.
‘:~ ‘~:‘:.:~‘~~.‘ :‘::c~~:’ . A spl i t t  in~ siihs~’,i ct~ ta r  which k’th

extended s pace s S and S are purely nondete rmin is t ic  w i l l  be cal led ~~~~~~~~~

In view of Lemma 2.1 of Part I and the fact that S c S . both S and S are

fu l l  range whe never ~ is regular . The usefulness of this concept is that the

class of regular Markovian splitting subspaces is in one-one correspondence w ith

a certain class of pairs (W ,Th of full-rank factors of v , W being stable

and W strictl y unstable. We shall i•’turn to this in Section 5.

To insure that all minimal splitting subspaces are regular , we need to

introduce the concept of noncyc l ic i tv .  l~ e~ say that the given process y j~

‘~~~~~~ f~’ if it has nontrivi al junk spaces , i.e., N i 0 and N
4 
~ 0, and

if both N and N
4 

are full range.

PROPOSITION 3.3 :c~ v 2’c c~!’~-ct~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~- ‘:trk~~ ~~~~~

:‘~~~c5 :r~ “c ’:~ ~~.r.

- 1  1Proof . It N and I are full range , (I ) and (N ) are purely

nondeterministic (Part I; Lemma 2.1). Hence , the proposition follows from

(3.9) and (3.10) .

4. HANKEL OPERATORS AND MINIMALITY OF SPLITT ING SUBSPACES

Given an arbitrary splitting subspace X , there is a unique pair (S ,S)

of perpendicularly intersecting subspaces such that S ~ H~ , S H
4 

and

x = S a S (Theorem 3.1). We shall try to gain some further insight into the

conditions under which the state space N is minimal by applying the basic

concepts of deterministic reali:at ion theory [3.4). Let G: S -‘ S and G~~:

S -
~~ S he the :~ ‘:kc.

’. ::~~ r~~tors ~ = and G4 = E
S

J 5, where A J denotes

the restriction of the operator A to the domain B. Furthermore , let ~(A)

denote the closure of the range and 14(A) the null space of A .

‘~~ .-
- - -
‘ ~~~~~~~~~~~~ ~t*~-~

- - - ~~~
. 

~~~~~~~~ - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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PROPOSITION 4.1. The operator8 C and C4 are adjoints. Moreover , I
M(G) = S1, N(G’) = 5’ and

R(G) = R(G4) = X , (4.1)

where X = S n S .

Proof. To see that the first statement is true , note tha t for a l l  s S .1
and S E S

<G
~
,s> s = <S ,S> =

where <
~~~~~

>
~~ 

is the inner product restricted to S. Relations (4.1) follow

from (3.7) and (3.8), and , since S1 a S (Proposition 2.2), W (G) = S1. In

-1.the same way , it is seen that N(G4) S . 0

By Coroll ary 3.1 , X = S 0 = 5 0 S1. Consequently, X is isomorph ic

to the quotient spaces S/S’ and S/S’. i.e.,
1.

X ~ S/N(G) and X S/l~4(G*) (4.2)

(Proposition 4.1) .  Actually, by choosing representations in the equivalence

classes properly, we may identify X directly with the quotient spaces in (4.2).

The formulas (4.1) show that the factorizations of C and C4 through

X described by the commutative diagram s

C G*

E
X
~~~~~/J EX~~~~~~~~~~ 

(4,3)

(where J: X -‘ S and 1: X -‘ S are the insertion maps Jx = Jx = x) are

canonica l in the sense that E~~5 (E
1

1 5
) maps onto a dense subset of X and

J (J) is one—one . This canonical property, as well as (4. 2) , illustrates

the fact that X is a minimal (S ,S)-spl itting subspace. (Cf[3; p.259].)

- -~ • - - f ~~~~ . ~~~~~~~~~~~~~~~~~~~~~~ - -

A.~ .. ~~~~ ~~~~~ 
.. I ~~~~~ - - ~~

- ~~~~~~~~~~~~~~~~~ ~~~~~~~ ~ ~~~~~~~~~~ ~~~~~~~~~~
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We shall now relat e this approach to the concept c ot’ observab I l it v and con -

struc t ibil itv defined in Sect ion 3 1w invest igat lug under what condit ions \ i’.

a —n’’:I~~:.’ spi it t ing subspace (w i th  respect to 1iC • II~ ) . The fol low Ing l emma

provides us wit 1~ two spl i tt ing suL~spaces which are potent i a l l y  sina i Icr

LEMMA 4 . 1 . ‘c’:a I. ~‘ ~‘~‘a ~1. ‘~~ ~. :‘; . p • ‘a C : C - ~‘:,

C : G* . ~~~‘‘: R (C
4

) rn.: R (C ) :~ ‘. a:’ -~: ~~:‘: : d:~~ ‘ :~~~ ‘‘‘;~~~::‘~a I ‘:

Proof. It suffices to prove the statement concerning C : then the one
+ - 4.

about C follows by symmetry . Triv i a i  lv ~(C ) l. ~G) . and hence ~ ~C ) . \

- + - 5 +
(Proposition 4.1). Obvi ousl y , the predictor space ~ ‘~C F ii  is an (5.11 ) —

splitting suhspace , and henc e a I so a s p l i t  t i ng stibspace 1. Lemma 2 . 3)

+
It is therefore natura l to consider the factori zat ions ~ t’ C and C

through N induced 1w those in (4 . 3) , i . e

4 -

C C
4. - -

\~ / 
1~~

where 0 := is the ~‘~a,’i’:’~:?’:
’.’I~ :. ~‘~‘:~ ‘p and C :~~ F11 11

- the

.“iv~ ~~~~ I~”I .
‘ 
It:i ~

‘ ‘,‘~~~
-
~ ‘j’ . The first factori :at ion i s canoni cal if and on lv

if 0 maps onto a dense subset of N . i.e. . I is observable , in which case

X R(G
4
) . The same statement holds for the second factor i  :ation (4.4) if we

exchange 0 for C . C
4 

for C and observable for constructibl e . Conse-

quent 1 , ninimal i tv  of N is equivalent to both factori at ion s being canonical

(Proposition 3 .2 )  . Note that . unli Ke the si tuat ion in deterin i ni s t  i c r ca  i i  :a —

t ion theory (3 , -~ , ~:~~‘ factori zat ions are needed . In this r e spe c t  . construct i --

hi! it” is a form of dua l observab i It tv and ~Ioes not correspond to reachab ‘ i i  t

The ‘‘reachabi l i ty operators ’’ .1 and its dual .1 are a lwavs one—one and ~ 1 av

k 
- 

~~~~~~~~~~~~~~~~~~~~~ 
., ...

- ..-~~
• - - -

~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
—

~~~
—

~~
----— - -

~~ 
--
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no important role here . (Since in effect we are working with spaces of func-

tionals of inputs and outputs , both diagrams are dualized as compared to the

determ inistic setting in the sense that all arrows and the order between the

observab ility and reachability operators have been reversed.)

The previous discussion suggests that a splitting subspace X is observ-

able if and only if , for a given S. S is as small as possible , and that ,

dually, the same holds for constructibility exchanging S for S and vice

versa . To clar ify this point , f irst consider the following lemma .

LEMMA 4.2. Let X and X ’ be two sp litting subspaces and let (S,S)

and (S’,S ’)  be the corresponding extended past and future spaces. Then X c x ’
if and only if S C S ’  and 5 c 5 ’ ,

Proof. In view of (3.4) , the (if) -part is trivial . It remains to prov e

(only if) . Since S = V X (Theorem 3.1), N’ c X implies that 5’ c S.

The rest follows by symmetry . 0

Consequently, in order to obtain a minimal X = S n 5 , we must reduc e

S and S as much as possible. Now , keeping S fixed , it is easy to see

that the smallest S which both contains H” and intersects S perpendicularly

is S = H
4 v S1, i.e. , exactly the condition (3.11) for observability . Like-

wise, keeping S fixed , S = Fl v is the smallest subspace containing Fl

and intersecting S perpendicularly, yielding the constructibility condition

(3.12). We shall now discuss some consequences of these observations .

First , this provides us with an alternative proof of the equivalence of

conditions (i) and (ii) in Proposition 3.2, which we restate here in a some-

what stronger form.

- ~~~~~~~ - , 
I -

~~
- — ~~~~ ~‘“ - - — -4,- ...-’~~~~~~----,. ~~~~~~~~~~~~~~~~~ - — 

-
.
~~~ = ~~~

- - - -

-

~~~~~~~~~~~~ 
-
~~~~~~ 

( 4 U ~~ l~~”) 
- 
~~~~~~~~~~~~~~~~~ - ~~~~

• 
~~
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PROPOSITION 4.2.  ? t ’t S -‘ ii an,! 5 D ~j oe t:, ’~~’ ‘!‘!.‘p~~.:~ .‘a:-:. .’a,

r ’~..i aet N — S a 5. Th1 ’’~ N iv z ‘!!inIm ~! a : ’ .’ i t t  i~ :~; a:~~v: :..’ I” rn.! .‘~
j ‘ :~ I ’

h~~~ h .‘.‘~i.1i ~ ianv (3 .  1 1) .  rn.! (,~ . I:’ h~ ?.i .

Proof. ( i f) : Assum e that (3 .11 )  and (3 .12 )  hold. The S1 . 5 . i .e. ,

S and S intersect perpendicularly (Proposit ion 2 .2) . Hence , N is a sp l i t -

t ing subspace (Theorem 3 . 1) .  It remains to show that I is minimal. In order

to reduce X e ither S or S or both must be reduced whi le neither can be

enlarged ( Lemma 4 . 2 ) .  But this is inconsistent with (3.11) and (3 . 12) ,  since

S and S w i l l  not be reduced . Hence I is minimal.

(only  if) : Suppose that N is a minimal splitt ing suhspace. Then the

pair (S ,5) is uniquely determined ; we must have S Il~ V N and S = II~ V N

as in Theorem 3 .1. In fact , under the g iven conditions , ne ither S nor S

can be smaller , and enlarging (say) S (as given by Theorem 3.1) .  to S •

wi l l  yield (S ~ ) n S = X ~ x x , s ince  ~ S1 a S (Proposition 2 . 2 ) .

Now assume that (say) (3.11) does not hold. Since S contains and inter-

sects S perpendicularly . S ~ H
4 

V S1. Then, by the d iscussion above , S

can be reduced to 1 I~ v S~ , Since S = H~ v N , this would reduced N too ,

contradicting minimality. U

Secondly, g iven any splitting subspace , the above procedure defines an

algorithm by which a minimal spli tt ing subspace can be constructed.

PROPOS IT ION 4 .3. 1~ t N’ he an arbi traru at’  77 ~ t I ~:~: v:il’ar.:,’’ an.! dej’f~:e’

S : 1I~ V (II V N’ 1’ and ~ = ii v ~‘e~ N = S ri S. ~~:,“t N Iv a ‘
~ I’!I ,”k 2 !

ar I t t  :‘n.~ a:d ’vr,z, e.  I f  X ’ is ,~!.irke: ’ Ian , then so iv X .

Proof. (i) To show that N is a minimal splitting suhspace . it only

rema ins to prove that S = U4 
V S1 (Propesi ti on 4.2). The given condition

S Fl v S~ implies that S1 
a 5 , and consequent ly H

4 
V 5’ a 5 ,

k— 
, —-.--  - - -. - ,

~~~ .— ..- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. ~~~~~~~~~~~~~~ -
— - _....A ~~~

—--
~~~~~~~~~~ 

-
~~
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~~ 
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Set S’ = H V X’ . Then , si nce (5~~) 1 
a 5 , S’ contains il and i n te rsec ts  S

perpendicularly. But S is the smallest subspace w i th  this property. Hence ,

S a S’, i.e., (S’)’ a S’. wh ich implies that S ~- v S1. Hence , S — 1I~ v 5
1

as required . -

(ii) To prove that N is Markovian , we must show that (3.13) and (3.14)

hold . Since X’ is Markovian , S’ sat isfies (3.13). Then (S’)’ satisfies

(3.14) and , since the same is true for H
i’
, S also sat is f ies (3 .14) .  Now ,

by a symmetric argument , it is seen that S :— Fl v 5’ satisfies (3.13) . 11

5. SPECTRAL REPRESENTATION OF REGULAR MARKOV IAN SPLITT ING SUBSPACES

Since the given process y is stationary , mean-square continuous and

purely nondeterminstic , it has the spectra l representation

y(t) = ~~~ d~ (s) (5.1)

where integration is over the imaginary axis and d9 is an orthogonal ~tochas-

tic vector measure such that

E{d~ (iw)d~ ( iw)~~} ~~iw)dw , (5.2)

L 

~ being the mxm spectral density . Assume that ‘I~ has rank p s m. Then

a full—rank spectral factor is any tnxp-.matrix solution of

W (s)W(-s)’ = ~~s) (5.3)

such that rank W = p. To any such spectral factor , we may associate a

p-d imensional Wiener process

u(t) fe
5t _l

d~ (s) ; d~ = w~~I~ (5.4)

which spans the whole space 14 (see Part I). (% ~~~~~
“ is the left inverse of IV.)

Let U denote the class of all such Wiener processes . Let W(du) and H
4 (du)

be the closed linear hulls in U of respectively the past and the future of

__ ~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the process u. We shall say that W is stable if its rows belong to the

Hardy space K~ of p-dimensional functions f which are analytic in the open

right half-plane and such that J fl f (a + i~) 
~ 

2 
dw is uniformly bounded for

all a > 0, and strictly w2stabie if its rows belong to the conjugate Hardy

space H .  Let U4’ and U” be the subclasses of U corresponding to stable

and strictly stable spectral factors respectively.

LEMMA 5.1. There is a one-one correspondence between stable full-rank

spectral factors W (determined modulo multiplication with a constant uni tary

matrix) and left invariant [ i .e . ,  satisfying (3.1 3)] and purely nondeterministic

subspaces S ~ H. The subspace S is related to W by

S = H’’(du) (5.5)

+ .where u ~ U ts the Wvener process correspondi..ng to W.

LEMMA 5.2 . There is a one-one correspondence between strictly unstable

full—rank spectral factors W and right invariant, [i.e., satisfying (3.14))

and purely nondeterrr zinistic subspaces S H’
~. The subspace S is related

to W by

S = H~(dü) (5.6)

where u ~ If is the Wiener process corresponding to W.

The proofs of these lemmas can be found in Part I, where somewhat differ-

ently stated but equivalent results are given.

It was shown in Part I that, to each u c LI,

J fdu t—~~f (5.7)

defines an isoinorphism between H and the space L~(I) of all p-dimensional

row vector functions which are square-integrable on the imaginary axis .

__ ____ .
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By the Palev-Wiener Theorem [~
‘,8,1l), the isomorphic image of ti (du) under

is precisely the Hardy space K .

Now , in view of Theorem 3.1 and Lemmas 5.1 and 5.2 , N is a reg u lar

Markovian splitt ing subspace if and only i f

N = Fl~du) c~ E1’~(dü~ (5.8)

for some u ~ U~ and fl € If such that W (du) and H~
’(dQ) intersect perpen-

dic u lar ly .

LEMMA 5.3. ~~~~~~ u t ~~~ and u c (C, ~nd :‘t’t W and ~ L~c’ the ‘rc.~rcnJ—

~ ~~~~~ ~~~~~~~~~~~ ~~~~

K = W ~~ W . (5.9)

‘ z~~: S : = II (du) ~nd S = Fl4 (dii) fn rs~~t :~~~~~nJ fL~u Z~zrZ-~i i’:’ and ~‘n

K f~ an fn’:~~’ fan . (See Part I for definition.)

Proof. The subspaces S and S intersect perpendicularly if and only

if S~ a S (Proposition 2..fl, i.e., W (dii) a W (du), the isomorphic image

of which (under Q ) is H~K a to see this use Lemma 4.3 of Part I.

Since S’ is full range and left invariant , Lemma 4.1 of Part I can be used

to show tha t Q~S’ = H K  is a full-range invariant subspace of L~(I) [~~.

Hence , in view of the Beurling-Lax-Helson Theorem 
~“J , 

H K  a t1~ if and only

if K is inner . 0

By Corollary 3.1 , (5.8) can be written X = f((du) e H (dii) , the iso-

morphic image of which (under Q 1 is Q X  = e (H~K). Consequent ly

N = J(U K)~d~~ (5.10)

where u ~ U
4 

is the Wiener process corresponding to W , and the superscr ip t ‘

denotes orthogona l comp lement in H .  We collect these observations in the

following theorem , which is a slight genera1i~ation of Theorem 4.1 in Part I.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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‘S

T H E O R E M  5 . 1 .  The subopa ce N a r ’e’!~ lar zrk ’vian s~r? t:?~:

if and onl4i i f  (5. 10) holds for  ~~~r?t ’ pa ir (W,W) of f u l i  ran k sr~~’tr ~~ :‘~~r~

such tha t W is stable , ~ is ~. trf1~tly unstable , and K :=

In particular , if y is str ict ly noncyclic , all minima l Markovian split-

ting subspaces are given by Theorem 5.1 (Proposition 3.3).

6. SPECTRAL DOMAIN CRITERIA FOR OBSERVAB I LITY , CONSTRUCT IBILITY AND MINIMALITY

Theorem 5.1 provides us with a procedure to find all regular Markovian

spli tt ing subspaces: All possible pairs (W,W) of full-rank spectral factors

with W stable , W strictly unstable and K = inner , inserted into tS.9)

and (5.10), generate the whole family of such splitting subspaces. But how can

we decide whether such a pair will provide an observable , or a constructible or

a minimal spli tting subspace? We need to translate the geometric criteria of

Section 3 into spectral domain language.

To this end , first note that W is a stable full-rank spectral factor if

and only if it can be written

w = w e , (6.1)

where e is an inner function (for H ) and IV is the unique outer spectral

factor , corresponding to S = S : = Fl. Similarly, W is a strictly unstable

full-rank spectral factor if and only if it has the representation

= W~~ , (6.2)

where 0 is conjugate inner (inner for H~ ) and ~V is the unique conjugate

outer spectral factor, which corresponds to S = 54 := I1~ .

PROPOSITION 6.1 . Let x be a regular Markcz’iczn sp Zitti’:~’ s:th ’a’:’, :.~
(6.  1) and ( 6 . 2)  be the correspondi ng spectra l factors , and -ct K be deff ’zt ’d

by (5 . 9) .  Then X is observable if and only if K 1 and e are right

L . . - —--..
~— . - - 

~~~~~~~~~~
. . A  

~~~~~~~~~~~~~~~~~~~~~~ 
L — ~~~~~~~ -~ 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~ ..~~~4 ~~~~~~~~~~~~ 
— I.A.hL...4~~~ ~
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o ’r’rir~. a’zJ ~~ ~~uct lb 1 e 1” a’:i ~‘~: K ~~~~ ~~~~~~~

Proof. Let S and S be respect ively the extended past and future

spaces of X , and let u and fl be the Wiener processes defined through the

representations (5.5) and (5.6) . Using Lemma 4 .3  in Part I, it is seen that

the isomorphic image of the constructibility condition ~3.12) under the map

is = (H X) v (H~O), which holds if and only if K and ~ are right

coprime. In the same way , using the map Q~ , the observabilitv condition

(3.12) is seen to be equivalent to K 1 and e being right coprime . 0

In order to apply conditions (iii) and (iv) of Proposition 3.2, we a lso

need to characterize minimality of S and S in the spectral domain. We

shall say that a stable (strictly unstable) full-rank spectral factor is -?inf—

~ul if it corresponds to a minimal extended past (future) space. Assume that

y is strictly noncyclic. Then X_ and are regular splitting suhspaces

(Proposit ion 3.3) , and consequent ly there are associated pa irs (W ,W ) and

(W ,W) of full-rank spectral factors (Theorem 5.1). Then define K and

K~ to be the corresponding functions (5.9). We showed in Part I that in the

scalar case , all minimal Markovian splitting subspaces have the same K , so

that in particular K = K
4’
, hut it is still unclear to us what happens in

the general case. Moreover let be the 0 in (6.1) corresponding to

W 1, and § the 0 in (6.2) corresponding to W.

‘1
P R O P O S I T I O N  6 . 2 .  Suppose tha t y is str io~~ y n i ~’?l ~’. ~~‘t W be a

stable f u l l—r a nk spectra l f ~ot c’r . and d~’fi n~-~ j  = W ”~W .  men j  is inner

and the f ollow7.no cond~.ttons are t’qu va~ent:

( i)  W is minimal

( i i)  0 is a l e f t  inner divisor of  0 , i.e .,  there is an inner
function 4, such that 0~ = 0 .

(iii ) J and K~ are rig ht copri me .

- - . .t,., ..~. ~~~~~~~~~~~~~~ - - .

A.. ~~~~~~~~~ - - _..., -- ~~ k~~~ 
L_ - 

~~~~~~~~~~~~~~~~~ NJ -~~~~~~~
.
~~~~ - - ‘~~ ~~~~~~~~~ - —
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Proof. The equivalence between (i) and (ii) follows from Proposition 4.1

in Part I. The equivalence of ~i) and (iii) follows from Theorem 5 .1 in

Part I. 0

The fact that (i) and (ii) are equivalent was first proven in [S
~ 

in the

scalar case. The dual version of Proposition 0 .2  goes as follows .

PROPOSITION 6.3.  ~~~ :‘ast’ tna t y Z.8 st~~Z~’t?~i C’ k7~.~’~ :~~~. ~~~~~~ W be a

stri~’tl~i :~nsta h e f u :  —ran k ‘~‘otpa ~~~tar , “~~~~ ~~~~ ~ W — LW ‘h~’n J is

I ‘:nep zn~i t w  ~ 7 ~‘e~,f n , ‘~‘nJf  t ia’:s ar t ’ ~~~ I ; ‘a en~
(i) W is -n~nf~~C

( Ii  0 is a ~
‘ u~:er if: ’ I s~ ‘r’ —

~~ ‘ j  .:n~f K
:l 

a~e vi .‘~n’ ~‘ rr -fr ’e .

7. STATE EQUAT IONS FOR FINITE DIMENSIONAL MARKOV IAN SPLITT ING SUBSPACES

If the matrix function K is rational the representation (5.10) is par-

t icularly simple to real ize.

PROPOSITION 7 . 1 . N he a r’~’a:~ ~~ r e: ’ian srI Itt :~ i~ ra~’’.

Then N is ~‘f n I te ~I~~’ns f a 7 L :  : f ÷ ~ and en ?:i K, it • ”f  u1 ’~i ~~ ~~~ .9) , ~~~t ~~~~~ :

Proof. As pointed out in Section 4, N = R(G) , where G = ES I 5. Let u

be the Wiener process associated to S through relation (5.5). Then, under

S H and S H~K (Part I: Lemma 4.3 ) , and consequently , us ing the

not ations of Section 5 of Part I, C is isomorphic to the Hankel operator HK .

S ince therefore N ~(H~
) , dim X ‘ ~‘ if and only if K is rational [4 ;  p. 395 .

Theorem 3.S~~. (To prove the if-part . follow the lines of the last part of the

proof of Lemma ‘.l.) 0

~~~~~ ._._.— , . ~‘ ~~~~~ - , ~~~~~~~~~~~ r~w~k ____._,~_~____~. 
~~~~~~~~~~~~~~~ L. —. - _ .

~ - -  . - - ‘
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In general , there are no finite dimensional splitting subspaces . One very

important excep tion, however , is the case when the spectral density of y is

rational.

PROPOSITION 7.2. Let the spectra l density ~ be rational. Then all

irtinimal splitting subspaces are f i n i t e  dimensional.

Proof. It is a well-known fact from Wiener filtering theory [8] that ,

under the stated condition, the closed li near hull in H of the predictors

{EH y(t); t � 0) is finite-dimensional. But this is precisely X := ~~~ H4’,

and hence dim X < ~~~. Then, by symmetry , X÷ := ~ Fl is also finite dimen-

sional , and consequent ly so is the frame space H°. Since all minimal splitting

subspaces are contained in H~ [see (3.3)), the desired result follows . 0

COROLLARY 7.1. Let the spectral density ~ be rat ional. Then all

sp litting subspace s contained in the frame space are finite dimensional.

Now cons ider a finite dimens.~.ona1 regular Markovian splitting subspace

with corresponding spectral factors (W ,W ).  Then, by Proposition 7.1 , K =

W~ iv is rational . Following Forney [9], we consider the vector space V K
of 2p-tuples over the field of rational functions, generated by the columns

of the 2p x p matrix K = [I,K’ ] ’ . Then use the algorithm presented in [9]

to find a minimal polynomial basis in ‘1
K

rn Let n~ be the degree of the

i:th element in this basis, i.e., the greatest degree of the 2p_polynomials

in the i:th 2p-tuple. Then the minimality of the basis means that n

+ n~ + ... + n~, is as small as possible. Let Q := [Q’ ,~ ’]’ be the

2p x p polynomial matrix formed by this basis. Then

K = 
~Q
’, (7.1)

where Q and Q are right copritne polynomial p x p matrices which are column

proper [10], i.e., the high order coefficient matrices ‘~‘h 
and t

~
1h are

-a-s  

~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~
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full rank is the constant n-~itri\ whos e i:th column c O n s i s t s  of the

coefticients ot s in the iath column of ~~.) The numbers n
1
, n ,, . . . , n

are’ cal led the i~:di~’es of Q (or of Q) [9; Main Theorem and Theoren 
~1.

LE~ ’tA 7.1 . ~~~ K is f : ’en ~~. . Lc:  f (H K) ~ and

= fQ. ~~e’: g t R
1
[s), ~~ere R

1
[s] is t:c e ass

- 
~~~~ 

I:. ‘~ r ’rf a ~‘s is I ~~ rca I e’ f

Proof. In view of (;. l) ,  the representation

(t1~Kr
L 

= {f H fK~~ H~)

[7 , p. 75] can be written in the form

(H ~ K) ’ = {gQ 1 I H~~} .  (7 .3)

Se t h :: 
~~~~ 

Let f t (H K)~~. Then, since f U~ , g = fQ is analytic

in the open right half plane. Similarly, sinc e ~ H~ . g = hQ is analytic

in the open lef t half plane . Also f (#i~K).L implies that f can be

analyt ically extended to the imaginary axis [4;  p. 270 , Lemma 13.o } .  so there-

fore g fQ is analytic there too . Hence g is an entire function. 1~e

want to prove that g e R~ [s]. To th is end , first note that k : detk is a

Blasche product, i.e. , k is the product of relatively prime functions k.~ s) :=
n~ nj~(s - s.) /(s + 

~~ 
(whe re , for each function k., 5.  i~ a complex number

and n. an integer) , and that K is an inner divisor of kI [7; p. 70] .

Then H~k c H K  (7; p. 691 and H k  = nj ~H~k . )  so t hat

( H K ) 1 
c (H k)’ = \ .(H k.~~

’. (7.4)

Therefore, if we could prove that , for each i , (H
~

k
~

)1 is :1 space of rational

vector functions , the same holds true for (H K1’, and consequently the’ en-

tire function g must be a vector polynomial. Since k~ is a scalar inner

function, i t  suffices to prove that an arbitrary component of any vector



_- ,

function in (#1 k.) ’ is rational; hence , for the rest of the proof, it is no

restriction to assume that is a Hardy space of scalar functions . Now ,

using Cauchy ’s formula, it can be shown [8; p.34] that

1 ~ —
e.(s) = 

- - ; j = 0, 1 , 2,
.1 s + S j 5 + S

j J

is an or thogonal basis of t1 . Howe ver, e. k. e. 
+ 

, and consequently

f1~k. is the closed linear hull of {e , e 
+ 1’ ~~~~ Hence , (U k.)’ is

the linear span of {e0, e1, ..., e~ i~~’ 
which is a space of rational

functions as required . 0

PROPOSITION 7.3. Let X be a finite dimensiona l re~-ular Markovian split-

ting subspace and let (W ,W~) be the corresponding pair of spectral factors.

Then there is an m x p po lynomial matrix P such tha t

W = PQ
1 and W~ = ~~~ (7.5)

where Q and ~ are defined b~j  the (r i ght coprir ne and column proper ) fac tori-

zation ( 7 .1)  of (5 . 9) .  The function P has a Z. eft inverse.

Proof. Equations (5.9) and (7.1) together yield WQ =i~~. Call this

matrix function P; then equations (7.5) hold. Since W has a left inverse

so does P. It remains to show that P is a matrix of polynomials . Since

wx~~ = W, (7.2) implies that the rows of W belong to (H4’~K)’. Hence, by

Lemma 7.1, p is a polynomial matrix. 0

LEMMA 7.2. For i,j = 1, 2 , . . .,  p, let p.. and q.. be polynomials

such that pj~ /s~ . 
= 
~~~~~~ Then, for each i, deg pj~ - deg q

~~• 
S -

with equality for some j .

Proof. By Cramer ’s rule , [Q
~~

(s)]
~~ 

= ~~~~~~~~~~~~~~~~ where ~ := det Q

and is the determinant of the matrix obtained by deleting row j and

I.

-— - -~~ -.. ~~~~~~~~ .— — —‘ - -., “ I .- - ~
- - ~~~~~~~~~~~~~~~~~~~~~~~~

—~~~ _ _ A  
~~~ ~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~
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column i i n Q. Hence , . is a sum of products of one element :rom L- .~ch

of all column s of Q exce pt the i:th , and consequently ~teg .

~

. . . ~- n - n .

Since 1
~

1h is full rank , for each i there is a i such that equalitY

holds.  In fact , in each column t of Q there is a row j such that de let-

ing row i and column i in 
~~

1h leaves a nonsingular matr ix.  Hence in

fo rming 
~~ 

there is at least one produc t that contains only factors of

hi ghest degree. Since deg ~ = n , the l emma fo l lows.  2

THEOREM 7.1 . ~~ ~ ~~ ~-I~~-~ .~ ~~~~~~~~~~~~ ~~~~~~ fl , fl , ..., fl ‘
~~1 - p

~~.

-l —
~H K) = Q ~~~. . t )

— (~ I1 , n , . . . , n )
1 — p

p
R [s] 

j = 1, 2 , ...,  p. deg g1 ‘. n~ .

Proof. From ( .3) it follow s tha t the functions in ~H K ) ’ are of the

forn gQ~~ where g i s  a row vector of polynomials ILemma 7 .1).  It just

remains to show that the functions g satisfying gQ~~ H~ and gQ
l 

~ H,

are precisely those in . But , since ~ and Q have the n )
1 - p

sane indices , this follows from Lemma .2. 2

COROLLARY 7.2. X ~~~~
‘ a ~~.

‘ 
~~~~~~~ f~”a ~~~~~~~~ .~~~~~‘:~ -a~: s:’ .

-
~ ‘:s o:..~’s2ast ’s, - S (W , W) ‘,~ ~~s s~’ ~‘s:’o’:~: r -‘: ~~~~~~~~~ - I.

: Q and Q .
~
‘ ~‘s 1 :s—’: :~ v:-s~ ~~ ‘ ‘:‘r ~~- ‘~~ ~‘iZ tln .552 —

QQ ~~~~~~~~~~

x = (iw)p~
L(i )d~(i~ )

~ ~n 1, n ,, . . . ,  n ) 

~~~- - a  ,

-~~ ~~.- . -
~~ 

— -....~~~- ~~~~~~ --r - - -  ~~-.fr -



~h~’z~ P t ~s i:i ~r r : a ?  rnz tr ix P = WQ, fl , n ii - - i:

)5 Q an.! I’ is 2sf! n ‘II as j f l  •5j •~ ~7fl , . . 1; :. - u~ i~ no :s’t s ’’ X is

~ n : n
1 

+ 11 2 + . . . + n .

Proof. Theorems 5.2 and 7.1 imply tha t

-l A

X 

-L 

n~ , ~~~)
( iW ) Q ( iW )du ( iW ) . ( 7 .9)

Since W = PQ , du = QP d~ , and consequently (7.8) follows . By Propos i-

tion 7.3, p is a polynomia l matrix. The statement concerning dim X is

immediate. 0

Next we proceed to find a basis in X. To this end , first define the

n p polynomial matrix

il(s) = diag {n (s) . 11 (s), ..., n (s)} (7.10)
1 ~2 p

where is the k-dimensiona l column vector Ir
k
(s) := (1 , s , S 2

of powers of s~ and n 1, n ,, . . . , n are the indices of Q. Then , since

is nonsingular, Q may be written

Q(s) [Q]1
{diag (s

1
, 5

2 

..., s~~ ) + All(s) ) , (7.111

where A is the p x n-dimensional constant matrix of polynomial coefficients.

Now , in view of (7.8), the stochastic vector x defined by

x = 

:

fl L )(t
~~~~

) (7.12)

is a basis in X.

To obtain a dynamica l representation for x , define the shift matrix

J = diag {J , J , . . . , J 1 , (7.13)
n1 

n2 n -

where is the companion matrix with characteristic polynomial \~~ t s )  =

[i.e., 
~k 

is a k x k matrix with 
~~~~~ 

1 whenever i = i + I and zero

otherwise], and the p x n matrix ii with ones in positions (E 1
n~ .J) and

zeros elsewhere. 

— - — — - __-t___a. -,_ ..-__ 
~~~~~~~

4.. — .~. 
- . - -. ~~~~~~~~~~~~~~~ ~~~~~~I- a à .L.-~ a — 1UIJ~~~~~~~~~~~~I-A- -
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LEMMA 7.3 [10]. Let the ii x n matrix A and the r~ x p matrix B be

defined bj~

A = J - E A

1 (7.14)
B = E[Q ]

h

Then

ll(s)Q(s)~~ = (sI — A)~~ B. (7.15)

Proof . By definition,

(sI - A)rl(s) = (sI - J)il(s) + EAII(s).

But it is not hard to see that

(sI - J)Il(s) = E diag{s ~“2 . .. ,  s”~}

and consequently (sI - A)rt(s) = BQ(s). 0

The pair (A,B) defined by (7.14) is the Luenburger controllable canon-

ical form, and n1, n2, . . .,  n are the controllability indices [9,10].

THEOREM 7.2. Let rank ~ = p. Then to each regular Markovian sp li t-

ting subepace X of dimension n < there corresponds a stochastic reali-

za tion

dx = Axdt + Bdu (7.16a)

y = Cx, C7.16b)

where A, B and C are constant matrices of dimensions n x p, n x p and

m x n respectively, such that, for  all t e R, x(t) is a ba8is in U~ X,

• {u(t) ; t ~ R} is a Wiener process satisfy ing W (du) = S = v X, A is a

• stability matr ix, (C ,A) is observable, and (A,B) is in controllable canon-

i~~L f or~n with controllability indices n1, n2, . . . ,  ~~ The trip let (A,B,C)

is determined in the following way : Let ( 7 .1)  be a column proper and right

ii

__________ ___________________________, 4~~~~-.ba~ ———=—- .--—--- ... - - -1  •-
~~~~ 

— 
~~~~~~~~~~~~~~~~~~~~~~~ 

.,-  .- -.-
~~~~~ 

.- - - - - --..-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - - r  -~~~~~~~~~~~~~~ -- ~~~~~~~ 
- ‘

~-~~ --~~~~ 
-
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n ~
‘
~~‘ ~-,u ‘ :na ;~ ’~-’v ~~~~ Q. I ; ~’n A :‘:. ; B . ;r~ 

- - -; ‘: ,:~ 
-, 1’:. -

.

w~i C t lL~-’ .55 ’J ’J ’!~’ s,; ~ “ir r!x ‘j
’ P. ! . s.

Cil(s) = P(s ) .  ( .17)

Proo f . Define the n—dimensional process ~. x1t) t R} with components

xk (t) := lJt Xk k = 1 , 2, . . . ,  n , x being the stochast ic vector (7.12).

Then x (t) is a basis in X~ ~~~ for all t R , and , since P t
~d~

x(t) = f e
1Wt

n(jw)Q
1 ( i l ~ (i~~ ( 7 .I S)

where the Wiener process Iu(t) ; t & R) is  determined by (S .5) and Theorem - . I

Now , inserting (7.15) into this and t rans to rming  to the time domain. we obtain

t
x ( t )  f e ~~

t
~
1)B~Iti~~). C.19)

which is the integrated version of ( 7 .l~ a) .  In fact , since det Q is the

characteristic polynomial of A [91 all ci genvalues of A lie in the open

left half plane , and , since Q is :t minima l ha~is in V k (i. C. • u is as

small  as possible) , the pair (C ,A ) is observabl e. To establish (
~~

. 1~ b)

first note that , in view of (3.3), y(o) ~ N; hence , there is a matr ix C

such that y(o) = Cx . Applying the operator tI~ to this . (7.I(~h) follows.

It is clear from (7 .12) that C is given by (7.17) . 1

Note that we can obtain a whole class of equivalent realizations (7.1c~)

through transforma tions of the type

(A ,B ,C)~~~~ (T
1AT. T 1B , CT).

where T is any nonsingular constant matrix.

The complete analysis of this section can be repeated with time reversed .

Indeed, by rep lacing Q and ~ in the der iva ti on above , we obtain a realiza-

tion (7 .16) in which the matrix A has a ll its cigenvalucs in the open right 

~~~~~~~~~ - ~ -.
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half plane. To justify the exchange of Q and ~~, observe that (5.11) may

also be wri tten

x = 
J

1;K)
1
d~ ,

where now I denotes the orthogonal comp lement in H~ . Then tile Situation

is completely symmetric.
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